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S P H E R I C A L  D E T O N A T I O N  W A V E S  IN M E D I A  

W I T H  V O L U M E T R I C  V I S C O S I T Y  

G. M. L y a k h o v  a n d  V.  N. O k h i t i n  UDC 624.131+532.529 

Many solid and liquid media have volumetric viscosity appearing in dynamic processes 
associated with change of volume. Below we investigate detonation waves in a medium 
with volumetric viscosity given by the model [1] intended for the description of water- 
saturated soils, liquids with gas bubbles, and other multicomponent media. In these 
media the volume deformations are almost reversible and the tangential s t resses  are 
negligibly small, which makes it possible to investigate the effect of volumetric viscosity 
on the propagation characteristics of intense waves without the complicating effect of 
other factors. The differences in the diagrams of the corresponding shock (dynamic) 
compression and equilibrium state (static compression), and also the time required for 
establishing equilibrium in these media, are small, in the present work the problem of 
propagation of a spherical wave generated by the detonation of an explosive charge in a 
medium with volumetric viscosity and also for a nonviscous medium with the compressi-  
bility d iagram corresponding to the equilibrium state is solved with the use of a computer. 
The corresponding results for plane waves were obtained in [1-3]. In the case of spherical 
waves in unsaturated soils i t  is  necessary to use the Mises-Schleicher  plasticity condition 
[4]. Models where the viscosity te rm is introduced in the plasticity condition [5] are also 
recommended for describing dynamic processes in solids. 

w 1. We consider waves in a water-saturated soil, i.e., a three-dimensional medium (solid particles, 
water, gas bubbles) described by the model of [1]. We denote by ~1, ~z, and ~3 the volume content of the 
gaseous, liquid, and solid components, by V10 , V20 , and V30 their volumes, by Plo, Pao, and P3o their densities, 
by cl0 , c20, and %0 the speed of sound in them, by P0 the density of the three-dimensional medium, and by V 0 
its specific volume. All the quantities pertain to the atmospheric pressure P0, Pc = ~1P10 + ~2P20 + ~aPa0, %+ 
oz2+ ~3=1.  

At a pressure p these parameters  are  denoted by V1, V2, V3, Pt, P2, P3, P, and V, respectively. In water 
with gas bubbles ~3 = 0. 

It is assumed that in the free state all the components are compressed according to the  equation 

P'~176 [ ( ~ ~  )'~-- i] (13) P = Pc + - - - ~ i  

(i is the number of the component) whi ch corresponds to the Pots son adiabat for a gas and the theta equation for 
the liquid and solid components. 

The gas in the medium occurs in the form of small-scale bubbles isolated from each other by the re -  
maining components. Under the action Of a load the liquid and solid components are compressed instantaneous- 
ly, while the gaseous component gets compressed in a finite time, since its compression is caused by the 
displacement of the other components and by the filling of the initial volume of the bubbles by the other com- 
ponents. Therefore, the compression of air  in the medium is given by the equation 
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PlOc2o rfv,,7,_ 1 
p = co---W-, L\u ~ 

instead of (1.1) (~ is the coefficient  of v iscos i ty) .  

The equation of compress ion  and d ischarge  of the th ree -d imens iona l  medium under  these  assumptions 
has the fo rm 

where  

(1.2) 

a a~ r T i ( p -  Pc) 1 -(l+vO/vi 

~ 2  to iO J 

" ~ ( P ' V ) = P - - P ~  [go ~]a~ i 
~=2 [ P~~ + " 

The equation of the shock (dynamic) compress ib i l i ty  of the medium (Xr--~ ~, p-* ~) is  

3 
TrD ['~t (p - -  PO) ]--t/'~i dVv (1.3) 
v-: - -  = ,  +,=2Z ='L 0,0; 0 + t j , w(p)= 0o 

The equation of s ta t ic  compress ib i l i ty  (~r ~ 0, p-~ 0) is  

Vo + t j  . (1.4) 

The s ta t ic  compress ib i l i ty  per ta ins  to the equil ibr ium state when all the components a re  compressed  to 
the l imit  corresponding to the applied p r e s s u r e ;  the dynamic compress ib i l i ty  per ta ins  to the compress ion of 
only the solid and liquid components.  Equation (1.4) coincides with the equation of compress ib i l i ty  of the 
mult icomponent  medium descr ibed  by the model  proposed e a r l i e r  d i s regard ing  the vo lumet r i c  v i scos i ty  [6]. 
The prob lem of propagat ion and ref lec t ion of plane [7, 8, 1] and spher ica l  [9] waves in accordance  vAth this 
model  has  been solved. In [10] a model  is proposed which takes account of the compress ib i l i ty  of the gas in 
another  way. The re laxat ion of tangential  s t r e s s e s  is  taken into considerat ion in the model of [11]. 

W a t e r - s a t u r a t e d  soils  occur  abundantly in nature.  The content of the gaseous component usual ly  l ies in 
the range 0 -  ~l  -< 0.05; the radius  of the gas bubbles is in the range 0.001 cm-< r .  <-0.05 crn, the c~ ~lCent of 
the liquid component is in the range 0.2-< ~z -< 0.5. With r e s p e c t  to the granulomet r ic  composition wa te r -  
sa tura ted  soi ls  may  be sandy or  clay type.  The volume deformat ions  a re  r eve r s ib l e  and the tangential  s t r e s s e s  
a re  negligibly small .  

The detonation of the explosive is a s sumed  to be instantaneous.  The i sen t ropic  equation of the detona- 
tion products  has the following fo rm [1, 9, 12]: 

p = Ap'~ + BpV+~. (1.5) 

At la rge  and smal l  p r e s s u r e s  i t  goes over  into the equations 

p = p, ,  ( p / p , , ) ~ ' ;  ( 1 . 6 )  

P = P~ (g/Po)h'" (1.7) 

The p r e s s u r e  Pn and densi ty On cor respond  to instantaneous detonation; P0, Po cor respond to the a tmo-  
spher ic  p r e s s u r e .  The quanti t ies  A, B, n, and T a r e  de te rmined  f rom the conditions that the curves  (1.5), (1.6) 
have a common point Pn, Pn and a common tangent  at this point, and curves  (1.5), (1.7) have a common tangent 
for  p--~ 0. During the expansion f rom Pn, Pn the detonation products  do work equal to the explosion conversion 
heat  Q. 

These  conditions combined with (1.5) y ie ld  a closed sys tem of equations for  determining A, B, n, and 7: 

kn = n + BpV~ +~ (7 + 1 -- n) p~-l, ~, = ko _ 1, 
p,~ BO~ 

Q = P n ( n - t )  + 7 ( n - - t )  ( n - - y - - t ) .  
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In Lagrange  v a r i a b l e s  the basic  equations of  motion have the following f o r m  (r is the spat ia l  coordinate,  
t is  t ime) :  

a-~" + po x ,- i a~ n ' ~ -  § 7o ~,7-1 T~ = 0, (1.8) 

where  R i s  the Eule r ian  coordinate ;  v =2; 8 R / a t = u .  

The solution of the p r o b l e m  reduces  to the integrat ion of sy s t em (1.8) c losed by Eq. (1.2). The boundary 
conditions axe as  follows: 

At the boundary  of the gas  d l a m b e r ,  i .e . ,  a t  r =r0, due to the a s s u m e d  scheme  of instantaneous detonation 
and ins tantaneous  equi l izat ion of p r e s s u r e  dur ing the expansion of the chamber  

p/p,* = (r0/R)~; 

at  the shock-wave f ront  in the med ium (at  the p r e c u r s o r )  

p - - P o  :-Po uD, (P--po)D = p u  

(r  0 is  the rad ius  of the explos ive  charge ,  D is  the ve loc i ty  of the s h o c k - w a v e  front) .  

We change ove r  to d imens ion le s s  quant i t ies  and d imens ion less  Lagrange  v a r i a b l e s  

po : P/P,,, pO : Po/Pn, Po : P/Pn, V~ = VIV'n, 

c o = C/Cn, u 0 = U/Cn, D O = D/on ,  R 0 = R / r 0 ,  r 0 = r / r  0, t o = t c n / r  0, where  c n = # k n P n / P n .  

In  the new v a r i a b l e s  the equations of  dynamic  (1.3) and s ta t ic  (1.4) compres s ib i l i t y  have the fo rm 

vs  1-. , ,  
= tJ , voo ~ , + z . . , ~ i / "  ~ f 

i=2  L nVjo io 

1 
~ [  ,. ^ cO z -T- V00 ~=i L ~n~fo "Zo 
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TABLE I 

Media [ I I A, kg/ kgl <soo.m ) I ~, ~, ~, (see �9 m) 

Wa'er- aturat  s~ 0,0  I 0,39 I 0,0 I 1 
W-a~ 0,04 0,36 0,6 3,39.t0 ~ i , t3-t0  ~ 
Gas , 0,0t 0,99 - -  t,49.10 ~ 0,495.t0 ~ 

P~ IO2j~il ~ 

" Jl i/'N 

o il I i ,  II 
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Z 
t 2  g4 i6  ~8 2 0 2 2  2 4  ~ o 

Fig. 3 

and Eq. (1.2) de te rmin ing  the behavior  of  the med ium becomes  

t 3 % [.v,(Po--____.__~P ~ ]-~+"vi 

Or~ Or~ \ Pc ] ' z=2  Pto r 

[ (1.9) 

In  con t ras t  to (1.2), Eq. (1.9) contains the ra t io  r0/v and not 1/V. The v i s c o s i t y  coefficient U i s  found 
exper imen ta l ly .  According  to [1] the app rox ima te  values  of  ~? a r e  given by the fo rmula  

~l = Ar,/3, (i.i0) 

where  A is  the acous t ic  r e s i s t a n c e  (impedance) of  the two-component  med ium (solid and liquid parUcles)  
sur rounding  the gas  bubbles,  

\ ~ ' , o  20 O~o~zo / T "  3-;;', ' 

and r .  i s  the radius  of  the gas  bubbles  (all bubbles of the s ame  radius) .  In the w a t e r - a i r  med ium we get  

A = p,.oC.,opZ~. 

I t  follows f r o m  (1.10) that  the ra t io  r 0 / r .  o ccu r s  in (1.9); i .e . ,  in the new v a r i a b l e s  the solution is  valid 
for  a l l  med ia  where  r 0 / r .  has  a given value.  

The p r o b l e m  was solved fo r  a t r o t y l - t y p e  explos ive  in w a t e r -  sa tu ra ted  soil  wi tha  1 = 0.01,a2 = 0.39, ands3 = 
0.6, and va lues  of  r 0 / r ,  = 0.01, 0.02, and 0.002. In the computat ions we took kn=3 , k 0 =1.25, Pn =96,000.105 N /  
m2, Pn = 1600 k g / m  3, Q = 1000 ca l /g ,  c n = 4250 m / s e c ,  Pl0 = 1.20 k g / m  3, Pz0 = 1000 k g / m  3, P30 = 2650 k g / m  ~, c~0 = 
330 m / s e c ,  c20 = 1500 m / s e c ,  030 =4500 m / s e c ,  ~I = 1.4, Y2 = 7, ~3 = 4. 

The va lues  of  A and ~ for  some  media  a r e  given in Table  i .  The va lues  of  ~ co r re spond  to r .  =0.01 cm. 

The solution was obtained by the method of c h a r a c t e r i s t i c s  using a computer ;  the use of this method for 
med ia  with vo lume t r i c  v i s cos i t y  was d i scussed  in [1, 2]. A continuous computation of the spher ica l  p ro b l em 
in a v i scous  m e d i u m  f r o m  the ins tant  of  explosion to the t ime  when the wavefront  (p recursor )  r e a c h e s  d i s -  
t ances  of  the o rde r  of lOOt0 is difficult,  s ince  i t  r e q u i r e s  a la rge  amount  of  computer  t ime .  This  i s  due to 
the nature  of the wave prof i le .  At l a rge  d i s t ances  f r o m  the explosion it contains segmen t s  of  v e r y  slow and 
v e r y  rap id  p r e s s u r e  i nc r ea s e  (the t r a n s i t i o n  zone ahead of the p r e s s u r e  max imum) .  For  the computation of 
the  t rans i t ion  zone 10-20 points  a r e  needed.  F o r  the un i form gr id  this r e q u i r e s  the introduction of 10,000 
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points.  There fo re ,  a s impl i f ied  va r i an t  of the solut ion  was chosen.  The wave  was  computed s u c c e s s i v e l y  
i n  the  following reg ions :  1 -  < r ~ _< 2.5; 2 -< r ~  < 6; 5 -  < r~ 17; 1 5 -  < r~ 30; r ~  > 30. 

In the sec t ion  r ~ 1 the p r e s s u r e  was  spec i f ied  in the f o r m  p~176176 at  the subsequent  posi t ions  it  was 
spec i f ied  in the f o r m  p~176 taking into cons idera t ion  the solution in the p reced ing  region.  Over lapping reg ions  
c o n f i r m e d  the a c c u r a c y  of the solution. 

w 2. We now d i scuss  the r e s u l t s  of computat ions  of the wave in the v i scous  m e d i u m  with r . / r  0 = 0.01 and 
in a nonviscous  medium.  C urves  1-3 in Fig. 1 show, r e spec t ive ly ,  t h e p r e s s u r e a t  the wavefront  (p recursor ) ,  
the m a x i m u m  p r e s s u r e ,  and the p r e s s u r e  a t  the boundary of the gas  chambe r  as  a function of the dis tance in 
the v i scous  medium.  Curve  4 co r r e sponds  to  the m a x i m u m  p r e s s u r e  in the nonviscous  medium.  The p r e s s u r e  
d is t r ibut ion  p~176 in these  media  is  a l so  shown for  f ive t ime  ins tants .  Here  and below the solid cu rves  r e f e r  
to the v i scous  m e d i u m  and the dashed curves  to the nonviscous  medium.  The m a x i m u m  p r e s s u r e  in the 

v i s c o u s  m e d i u m  is  s m a l l e r  than in the nonviscous  med ium by 5-7%. In both media  the p r e s s u r e  at  the in-  
ves t iga t ed  d i s t ances  i n c r e a s e s  discont inuously;  however ,  the jump is  s m a l l e r  in the v i scous  medium.  At r ~ = 2 
the magni tude of the p r e s s u r e  jump in the v i scous  med ium is  about 0.75 of i ts  value in the nonviscous  medium.  
In the v i scous  med ium the p r e s s u r e  behind the jump i n c r e a s e s  to the m a x i m u m  continuously.  

The change in the s ta te  of  the pa r t i c l e s  of the med ium during the p a s s a g e  of the wave a t  d i s tances  r ~ = 1, 
1.1, 1.3, 1.7, 2.8 is  shown in Fig .  2a. Curves  1, 2 co r r e spond  to the d i a g r a m s  of dynamic  and s ta t ic  com-  
p r e s s i o n  of the medium.  I t  i s  evident  that  a f t e r  the shock c o m p r e s s i o n  at the p r e c u r s o r  OF, occur r ing  a c c o r d -  
ing to the dynamic  d i ag ram,  the s ta te  is c lose  to the s ta t ic  d i a g r a m  along the l ines FM, which a r e  acont inuat ion 
of the s t r a igh t  line OF for  al l  points except  the f i r s t .  The d i scharge  occu r s  p rac t i ca l l y  accord ing  to the s ta t ic  
d i ag ram.  At these  d i s tances  the m i n i m u m  volume in the v i scous  med ium is  obtained a t  the m a x i m u m  p r e s s u r e .  
A s i m i l a r  nature  of the change of s ta te  i s  r e t a ined  at  mode ra t e  p r e s s u r e s  (see Fig. 2b). At r e l a t ive ly  smal l  
p r e s s u r e s  (see Fig. 2e) the l ines  FM a r e  not r ec t i l i nea r ,  the min imum volume i s  obtained during the per iod  
of p r e s s u r e  d e c r e a s e ,  and the d i scha rge  of the med ium occu r s  along the curve  lying beyond the d i ag ram of 
s ta t ic  c o m p r e s s i o n .  

The t ime  dependence of the p r e s s u r e  p~176 in p a r t i c l e s  with r~  6.3, 7.1, 8.1, 9.3, 10.7 in v iscous  
and nonviscous  med ia  is  shown in Fig.  3. In the  v i scous  med ium the p r e c u r s o r  m o v e s  on and the magnitude 
of the jump rapid ly  d e c r e a s e s  to zero  (denoted by c i r c l e s ) .  Curve 1 g ives  the p r e s s u r e  change at  the p r e -  
cu r so r ,  curve  2 g ives  the m a x i m u m  p r e s s u r e  in the v i scous  med ium,  and curve  3 gives the m a x i m u m  p r e s s u r e  
in the nonviscous  medium.  The  d i f fe rence  between the m a x i m u m  p r e s s u r e s  in the v i scous  and nonviscous 
med ia  does  not exceed  8%. F o r  r ~ > 9 the p r e s s u r e  a t  the p r e c u r s o r  is  p r ac t i ca l l y  equal  to p0; he re  the m a x i -  
m u m  dimens iona l  p r e s s u r e  in the wave is  p ~ 800 �9 105 N / m  2. The t ime  taken for  the p r e s s u r e  to r e a c h  i ts  
m a x i m u m  i n c r e a s e s  with the d is tance  of the wave f rom the point of  explosion.  

Fig. 4 
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The r e s u l t s  of  the computat ion of the p r e s s u r e  in the v i scous  (for r . / r  0 = 0.01) and nonviscous media  a r e  
shown in Fig. 4. Curves  1-3 give the t r a j e c t o r y  of motion of the boundary of the gas  ~ a m b e r  in the v i scous  
med ium,  the p r e s s u r e  m a x i m u m ,  and the p r e c u r s o r ,  r e spec t ive ly ;  curve  4 c o r r e s p o n d s  to the p r e s s u r e  m a x i -  
m u m  in the nonviscous  medium.  The p r e s s u r e  m a x i m u m  in the v i scous  med ium moves  with a ve loc i ty  close 
to the ve loc i ty  of the m a x i m u m  in the nonviscous  medium,  i .e . ,  the ve loc i ty  de te rmined  by the s ta t ic  com-  
p r e s s i o n  d i ag ram;  cu rves  I - l l I  co r r e spond  to the p r e s s u r e  d is t r ibut ion in the m e d i u m  (ver t ica l  hatching) a t  
t ime ins tants  9.5, 30, 70; the shock f ront  in the nonviscous  med ium at ta ins  d i s tances  r ~ = 6, 13, 20. The g r a p h s  
of the change of p r e s s u r e  with t ime  p~176 (horizontal  hatching) a r e  a l so  plotted for  the s ame  d is tances .  A p a r t  
of  the pos i t ion  of  I i s  shown on en la rged  sca l e  in the r ight  bot tom corner .  
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The d i f fe rence  between the maximum p r e s s u r e s  in the viscous  and nonviscous media at all  d is tances  
does not  exceed 12~o. The wave prof i les  p~176 a r e  significantly different .  In the nonviscous medium the wave 
rem~Lius a shock wave; in the v iscous  medium the jump gets  smeared .  At a sufficient dis tance f ro m  the 
explosion point t h e p r e s s u r e  (af te r  the a r r i v a l  of the p r ecu r so r )  r emains  a lmos t  equal to z e ro  for  some t ime 
and only l a t e r  begins to inc rease  to its maximum value.  The length r ,  of  this t rans i t ion zone of intense 
i nc rease  a t  a dis tance r ~ 20 is  sma l l e r  than one ha l f  the t ime T f r o m  the a r r i v a l  of the p r e c u r s o r  to the 
a r r i v a l  of the maximum p r e s s u r e .  As the separat ion f rom the explosion point i nc rea se s ,  T and T. inc rease ,  
but r .  i n c r e a se s  apprec iab ly  more  slowly. After  the maximum is at tained,  the dependence p~176 is  p r ac t i -  
caUy ident ical  in both media.  Thus ,  not iceable  d i f fe rences  in the wave prof i les  with and without the v i scos i ty  
a r e  observed '  rn_~Jnly in the time' per iod  before  the maximum p r e s s u r e  is obtained within the par t ic le .  

As in the case  of the p r e s s u r e ,  the d i f ferences  between the ex t r ema l  values  of the volume and the 
�9 ve loc i ty  of the pa r t i c l es ,  computed with and without v iscosi ty ,  do not exceed  a few percent .  The main d i f f e r -  

ence of the ftmctions V0(t~ and u~ ~ in these  media  i s  the p re sence  of the jump in the absence  of v i scos i ty  
and the continuity of the change in the v iscous  medium. The ex t r ema l  values  of the par t i c le  velocity,  the 
volume, and p r e s s u r e  in the v iscous  medium a r e  at tained a lmost  s imul taneously  at  these  dis tances .  

The graphs ofpO(t~ u~ ~ (solid curves)  and V~ (dashed curves) at dis tances  r ~ =30, 32, 35, 40, 45 in the 
v i scous  medium a r e  shown in Fig.  5. 

The graphs  cover  the region of i nc r ea se  of the p a r a m e t e r s ,  in which the i r  values  a r e  not iceably different  
f r om the init ial  va lues  (for the p r e s s u r e  it  is  t ime T* ), and the region of dec rease .  The t ime per iod immedi-~ 
a te ly  a f t e r  the a r r i v a l  of the p r e c u r s o r ,  when the p a r a m e t e r s  a re  p rac t ica l ly  equal to t he i r  init ial  values ,  is 

not included. The e x t r e m a l v a l u e s  of  the p a r a m e t e r s  d ec r ea se  as  the dis tance f rom the explosion i n c r ea s e s  
and the t ime r equ i r ed  to attain these  e x t r e m a  inc reases .  At these d is tances  the volume and the ve loc i ty  of 
the pa r t i c l e s  attain the i r  e x t r e m a n o t  at the maximum p r e s s u r e  nea r  the explosion, but during the period 
of the p r e s s u r e  d e c r e a s e .  The di f ference in the duration of the p r e s s u r e  inc rease ,  the veloci ty  of the par t ic les ,  
and the volume inc rease  With the dis tance f rom the explosion. The ra te  of d e c r e a s e  of the values of all 
t h r ee  p a r a m e t e r s  d e c r e a s e s  as  the dis tance and the total  duration of the wave inc reases .  

We now d iscuss  the resu l t s  of invest igat ion of the dependence of the wave p a r a m e t e r s  on the v iscos i ty  
coeff icient  or  equivalent ly on the radius of the bubble. F o r  the v iscous  medium with Gl = 0.01 and r . / r  0 = 0.01 
the dependence p~176 is obtained for  r ~ =30 and this is  used to compute the wave p a r a m e t e r s  at large  dis tances  
in the nonviscous and v i scous  media  for  r . / r  0 =0.02, 0.01, and 0.002. 

The computations show that the maximum p r e s s u r e  can be approximated  by the formula  

pO = pO i (rO/rO)~, rO.>/.r o, 

where  r~  p~= 22.3" 10 .5 (maximum pressure}  at  r~. The quantity fl in the nonviscous medium and the 
v iscous  medium with r . / r 0 = 0 . 0 2  , 0.01, and 0.002 compr i ses  2.55, 2.52, 2.43, and 2.37, respec t ive ly .  The 
p r e s s u r e  d e c r e a s e s  mos t  in tensely  in the nonviscous medium.  The intensi ty of the d ec r ea se  in the viscous  
medium d e c r e a s e s  with the i n c r e a s e  in the radius  of the bubble, i .e . ,  with the i n c r ea se  of the v i scos i ty  co- 
eff icient  ~ .  The d i f fe rence  i s  small :  Ata  dis tance r~  in the nonviscous medium and in the v iscous  medium 
with r . / ro=O.02 i t  i s  l e s s  than 5%. 

Thus ,  a t  smal l  d is tances  f rom the explosion the maximum p r e s s u r e  d e c r e a s e s  more  intensely in the 
v iscous  medium,  while at  l a rge  d is tances  i t  d e c r e a s e s  m o r e  in tensely  in the nonviscous medium. A s imi la r  
fea ture  was noted e a r l i e r  in the case of plane waves [3]. 

The  dependences p~176 u~ ~ (solid curves) and V~ ~ (dashed curves) in the viscous  medium at a d is -  
tance r~  a r e  shown in Fig. 6 fo r  d i f ferent  radi i  of the bubble. Curves 1-3 per ta in  to the values  r . / r  0 = 
0.02, 0.01, and 0.002, r e spec t ive ly .  In the segment  Ar0=5 the maximum p r e s s u r e  changes insignificantly (by 
1-2~o) on inc reas ing  the bubble radius  by an o r d e r  of magnitude. The wave prof i le  changes significantly; the 
length of the t rans i t ion  zone of intense i nc r ea se  of the p a r a m e t e r s  inc reases  by a fac to r  of 5-7.  The volume 
and the ve loc i ty  of the pa r t i c l e s  at tain t he i r  ex t r em a l  values during the per iod  of p r e s s u r e  dec rea se .  The lag 
i n c r e a s e s  with the bubble radius .  The nature  of the decay  of the p a r a m e t e r s  a f te r  the ex t r emum i s  reached  
r em a ins  p rac t i ca l ly  unchanged on changing the bubble radius  by an o rde r  of magnitude. The inc rease  of the 
v i scos i ty  coeff icient  leads to  an i nc r ea se  of the intensi ty  Of wave smear ing .  

Le t  us compare  the va lues  of  the wave p a r a m e t e r s  in the v iscous  medium and the nonviscous medium but 
computed accord ing  to the dynamic d iagram of  the v iscous  medium. The values  of p0  D 0, and u ~ computed for  
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TABLE 2 

5 

20 
30 
4O 
5O 

pc 

0 O,Oi 

0,52.t0 -i 0,43.t0-1 
0,i7. iO -~ 0,93. iO -~ 
0,66. I0 -2 0,68. i0 -a 
0,40-10 -2 0,~. t0 -a 
0,28. i0 -~ 0,13. i0 -a 
0,21. i0 -~ 0,9 .i0 -a 

0,502 
0,434 
0,407 
0,400 
0,396 
0,394 

Do 

O,Oi 

0,452 
0,323 
O,i3i 
0,080 
0,057 
0,046 

u 0 

0,27.t0 -1 
0,t -t0 -~ 
0,43 - iO -2 
0,26.10 -~ 
0,19. iO-= 
0,t5.i0 -~ 

O,Oi 

0,26 �9 lO -~ 
0,77. iO -2 
0,t4. iO -2 
0,75. lO-a 
0,48.t0 -s 
0,36. t0-~ 

~ i = 0  and 0.01 accord ing  to the model  without v i s cos i t y  a r e  shown in Table  2. In the f i r s t  case  the compres s ion  
d i a g r a m  p rac t i ca l l y  coincides with the dynamic  d i a g r a m  of the v iscous  medium;  in the second case  i t  coincides 
with the s ta t ic  d i ag ram.  As ment ioned above,  the r e su l t s  of  the computation accord ing  to the s ta t ic  d i ag ram 
di f fer  f r o m  thc,se for  the v i scous  m ed i um  only by a few percent .  Table 2 shows that  even a t  r~  in the 
v i scous  med ium the m a x i m u m  p r e s s u r e  is  an  o rde r  of magnitude s m a l l e r  than in the computat ions according  
to the dynamic  d i ag ram;  the pa r t i c l e  ve loc i ty  and the ve loc i ty  of  the m a x i m u m  D O differ  by a fac tor  of 3. Sub- 
sequently the d i f fe rence  i n c r e a s e s .  Thus ,  the wave p a r a m e t e r s  in the v i scous  med ium a r e  s ignif icant ly  
di f ferent  f r o m  the p a r a m e t e r s  computed accord ing  to the dynamic d i ag ram.  

w 3. The  e x p e r i m e n t s  show that in so i l s  t he re  ex i s t s  a s i m i l a r i t y  fo r  detonation waves;  on the  o therhand,  
in a med ium having v o l u m e t r i c  v i s c o s i t y  the s i m i l a r i t y  need not n e c e s s a r i l y  be there .  The coml~ltat ions 
c a r r i e d  out h e r e  enable  us  to explain th is  apparen t  contradiction.  Let  the rad ius  of the gas  bubbles in a med ium 
with a l = 0 . 0 1  be equal  to 0.05 cm. Then curve  1 in Fig. 6 pe r t a ins  to an e x p l o s i v e c h a r g e  of radius  r0=2.5 cm 
and cu rve  3 to r 0 =25 cm.  On changing the rad ius  by an o r d e r  of  magnitude,  i .e . ,  on changing the m a s s  of the 
charge  by three  o rde r s  of magnitude,  the e x t r e m a l  values  of  the p r e s s u r e ,  pa r t i c l e  veloci ty ,  and detonation- 
wave ve loc i ty  change a t  s i m i l a r  d i s tances  only by a few percent .  Cons ider ing  the in t r ins ic  s c a t t e r  of the 
p r o p e r t i e s  of the soil  (for example ,  content al)  it is not poss ib le  to pe rce ive  such a d i f ference  in the e x p e r i -  
men t s .  The  s i m i l a r i t y  pr inc ip le  is not exact ly  sat isf ied;  however ,  the deviat ions of the ex t r ema l  values  of the 
wave p a r a m e t e r s  f r o m  the s i m i l a r i t y  a r e  smal l  and cannot be ve r i f i ed  exper imenta l ly .  Computat ions show 
that  the t ime  for the i n c r e a s e  of the wave p a r a m e t e r s  to the e x t r e m a  depends substant ia l ly  on the sca le  of  the 
phenomenon. With the i n c r e a s e  of the charge  m a s s  by th ree  o r d e r s  of magnitude the growth t ime at a dis tance 
r ~ =35 i n c r e a s e s  by a fac tor  of 5-7. Th is  r e su l t  can be ve r i f i ed  exper imenta l ly .  The lag of the min imum 
volume in re la t ion  to the p r e s s u r e  m~_ximum also i n c r e a s e s  with the inc rease  of the m a s s  of the charge .  

The p rob l em  of p ropaga t ion  of a spher ica l  detonation wave in a ncnviscous medium is  solved iu [9] based 
on the model  of  [6]. The  computat ions a r e  done for five w a t e r - s a t u r a t e d  soi l s  with the content of the gaseous  
component  va ry ing  f rom 0 to 0.04. It is shown that  the wave p a r a m e t e r s  have  a s ignif icant  dependence on 
a 1. At sufficient  d i s t ances  f rom the explosion point with the i n c r e a s e  of ~ in this r ange  the m a x i m u m  p r e s s u r e  
d e c r e a s e s  by two o r d e r s  of  magnitude and the ve loc i ty  of propagat ion  of the m a x i m u m  p r e s s u r e  and the 
pa r t i c l e  ve loc i ty  d e c r e a s e  by an o r d e r  of magnitude.  A compar i son  of the computat ional  r e su l t s  with those 
of the e x p e r i m e n t s  conducted on w a t e r - s a t u r a t e d  soi l s  in field conditions for the m a s s  of the explosive charge 
vary ing  f r o m  1 to 100 kg shows a good ag reemen t .  

At the s ame  t ime  the computat ions showed that  the wave is  a shockwave  at all  d is tances  for  all  ~1- In 
the e x p e r i m e n t s  for  ~1 = 0 the wave is  ac tual ly  a shock wave but for ~1 > 0 s m e a r i n g  is  obse rved .  The t ime of 
the i nc r ea se  of  the p r e s s u r e  to the m a x i m u m  i n c r e a s e s  with ~,  and for  ~I  = 0.04 i t  r eaches  tens of mi l l i seconds .  
Computat ions  done on the bas!.s of the model  of the mult i  component med ium with vo lume t r i c  v i scos i ty  show 
that  it r e f l ec t s  the p r o p e r t i e s  of  r e a l  media  m o r e  accu ra t e ly  and comple te ly  than the model  without v i scos i ty .  
The e x t r e m a l v a l u e s  of the p a r a m e t e r s  depend substant ia l ly  on the content of the gaseous  component  and the i r  
dependence on the v i s cos i t y  coefficient  7 is  cons iderably  weaker .  An o r d e r  of magnitude change in 7 changes 

�9 the i r  va lues  by a few pe rcen t s .  The s m e a r i n g  of the detonation wave and i t s  t r a n s f o r m a t i c n  f r o m  a shock wave 
to a continuous c o m p r e s s i o n  wave depend subs tant ia l ly  on both ~1 and 7. The in tens i ty  of  s m e a r i n g  i n c r e a s e s  
with the i n c r e a s e  in ~1 and 7. Away f r o m  the explosion the e x t r e m a l  values  of the pa r t i c l e  ve loc i ty  and volume 
a r e  a t ta ined during the per iod  of p r e s s u r e  d e c r e a s e .  The e x t r e m a l  va lues  of the p a r a m e t e r s  can be computed 
app rox ima te ly  f r o m  the model  without v i s c o s i t y  according to the s ta t ic  d i ag ram of  the model  of the v i scous  
medium;  for  de te rmin ing  the t e m p o r a l  c h a r a c t e r i s t i c s ,  i .e . ,  the t ime for reaching these  va lues ,  and the wave 
p ro f i l e s  p~176 u~176 and V~ ~ i t  i s  n e c e s s a r y  to use  the model of a medium with vo lume t r i c  v i scos i ty .  

The au thors  e x p r e s s  gra t i tude  to L. I .  Sedov and S. S. Gr igoryan  for  discuss ion of the work.  
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OP :TIMUM C O N D I T I O N S  F O R  E X C I T A T I O N  

OF E L A S T I C  V I B R A T I O N S  IN S O L I D S  BY 

P U L S E D  I O N I Z I N G  R A D I A T I O N  

V. D.  V o l o v i k  a n d  S. I .  I v a n o v  UDC 534.231+ 539.121.7 

Investigations of elastic vibrations accompanying the interaction of pulsed ionizing radiation with solids 
have shown that mechanical s t resses  are  produced by an unsteady thermoelast ic  body force F(r ,  t) [1, 2] 

F(r, t) = - - r y E ( r ,  t), (1) 

where F is the Gr'dneisen constant of the target  material  and E(r,  t) is the energy absorbed from the beam of 
ionizing radiation per  unit volume of target  mater ial .  

Ordinarily nonstatiqnary thermoelastiqity problems require the simultaneous solution of the wave equa- 
tion and the heat-conduction equation. If the duration of a pulse of charged part icles T O interacting with a solicl 
target  satisfies the condition 

the propagation of heat does not have to be taken into account during a t ime on the order  of magnitude of the 
pulse duration. Here Tel is the t ime to establish uniform temperature conditions in the electron and ion sub- 
systems of the material ,  T T is the character is t ic  time for heat to diffuse from the region heated by a beam 
of radius r0, and ~ is the thermal diffusivity of the target  material .  

If condition (2) holds, and in addition TS= rb/s<<v T, the temperature of the region heated by the beam 
can be considered constant even for a time T s -- the time for an acoustic wave propagating with velocity s to 
leave this region. In this case the problem of finding the displacement of elastic waves u excited by a pulsed 
beam of particles is reduced to the problem of solving the wave equation, which for an infinite target can be 
written in the form 

Khar'kov. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 6, pp. 137-140, 
November-December,  1977. Original ar t icle  submitted November 23, 1976. 
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