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SPHERICAL DETONATION WAVES IN MEDIA
WITH VOLUMETRIC VISCOSITY

G. M. Lyakhov and V. N. Okhitin ‘ UDC 624.131+532.529

Many solid and liquid media have volumetric viscosity appearing in dynamic processes
associated with change of volume. Below we investigate detonation waves in a medium
with volumetric viscosity given by the model [1] intended for the description of water-
saturated soils, liquids with gas bubbles, and other multicomponent media. In these

media the volume deformations are almost reversible and the tangential stresses are
negligibly small, which makes it possible to investigate the effect of volumetric viscosity
on the propagation characteristics of intense waves without the complicating effect of
other factors. The differences in the diagrams of the corresponding shock (dynamic)
compression and equilibrium state (static compression), and also the time required for
establishing equilibrium in these media, are small. In the present work the problem of
propagation of a spherical wave generated by the detonation of an explosive charge in a
medium with volumetric viscosity and also for a nonviscous medium with the compressi-
bility diagram. corresponding to the equilibrium state is solved with the use of a computer.
The corresponding results for plane waves were obtained in [1-3]. In the case of spherical
waves in unsaturated soils it is necessary to use the Mises—Schleicher plasticity condition
[4]. Models where the viscosity term is introduced in the plasticity condition [5] are also
recommended for describing dynamic processes in solids.

§1. We consider waves in a water-saturated soil, i.e., a three-dimensional medium (solid particles,
water, gas bubbles) described by the model of {1]. We denote by @4, @y, and @3 the volume content of the
gaseous, liquid, and solid components, by Vy,, Vyg, and Vg, their volumes, by pyg, pgp, and pg, their densities,
by cy9s Cpgs and cg the speed of sound in them, by p, the density of the three-dimensional medium, and by V,
its specific volume. All the quantities pertain to the atmospheric pressure py, py= Q30+ CUgpg+ UgP3zy, A4+
a,+ ag=1.

At a pressure p these parameters are denoted by V4, V,, Vg, py, Py, P3, 0, and V, respectively. In water
with gas bubbles a3=0.

It is assumed that in the free state all the components are compressed according to the equation

e /v, Vi
p=py+ 22 [(_Vz) — 1] (1.1)
(i is the number of the component) which corresponds tothe Poisson adiabat for a gas and the theta equation for
the liquid and solid components.

The gas in the medium occurs in the form of small-scale bubbles isolated from each other by the re-
maining components. Under the action of a load the liquid and solid components are compressed instantaneous-
1y, while the gaseous component gets compressed in a finite time, since its compression is caused by the
displacement of the other components and by the filling of the initial volume of the bubbles by the other com-
ponents. Therefore, the compression of air in the medium is given by the equation
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instead of (1.1) (y is the coefficient of viscosity).

The equation of compression and discharge of the three-dimensional medium under these assumptions
has the form :

; I;]‘VO = (p(p);) - aﬂl’(l’, .V),/’l‘l, (1'2)

where

< ¥, (P— po) v/
m(p)==:S-—ZL—["L—73-4‘1] ;

i=2 pmcizo Pye¢i0 ]
14 : ; (p— Po) —v) M
\P(p,V)=p—pooc}'1V——2ai[—-——2 +1} S
' U = Piofio

The equation of the shock (dynamic) compressibility of the medium (V— o0, i)—' «) ig

3
4 ¥; (p— by} —1/% av ‘
p2=ent Do | | 0 ) =00 2 (1.3
o i=2 160
The equation of static compressibility (V—0, p—0) is
3

VS ¥, (p— Po) ~=1/v;

S S E— 1 . 1.4

Vo 121 % [ Pigcho * } (1.4

The static compressibility pertains to the equilibrium state when all the components are compressed to
the limit corresponding to the applied pressure; the dynamic compressibility pertains to the compression of
only the solid and liquid components. Equation (1.4) coincides with the equation of compressibility of the
multicomponent medium described by the model proposed earlier disregarding the volumetric viscosity [6].
The problem of propagation and reflection of plane {7, 8, 1] and spherical [9] waves in accordance with this
model has been solved. In [10] a model is proposed which takes account of the compressibility of the gas in
another way. The relaxation of tangential stresses is taken into consideration in the model of [11].

Water-saturated soils occur abundantly in nature. The content of the gaseous component usually lies in
the range 0 = ®; =0.05; the radius of the gas bubbles is in the range 0.001 em =rx =0.05 cm, the ¢ ntent of
the liquid component is in the range 0.2=a,=0.5. With respect to the granulometric composition water-
saturated soils may be sandy or clay type. The volume deformations are reversible and the tangential siresses
are negligibly small.

The detonation of the explosive is agssumed to be instantaneous. The isentropic equation of the detona~
tion products has the following form [1, 9, 12}

p = Ap® + Bpv+l (1.5)

At large and small pressures it goes over into the equations
P=DPa (p/pn)kn; (1.8)
P = P (p/po)™. (1.7

The pressure py and density py, correspond to instantaneous detonation; p,, py correspond to the atmo-
sphericpressure. Thequantities A, B, n, and y are determined from the conditions that the curves (1.5), (1.6)
have a common point py, Py and a common tangent at this point, and curves (1.5), (1.7) have a common tangent
for p— 0. During the expansion from pp, pp the detonation products do work equal to the explosion conversion
heat Q.

These conditions combined with (1.5) yield a closed system of equations for determining A, B, n,and v:

kn=n+BP)’z+i(Y+1-n)P;—:i1 y=rk —1,

Py, . Bo}
== Ti—p 1
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In Lagrange variables the basic equations of motion have the following form (r is the spatial coordinate,
t is time):

av 1 (R)"'au vav Qy__{__i_(R)"_a_p_:O (1.9)

a Te\T
where R is the Eulerian coordinate; v =2; 6R/8t=u.

The solution of the problem reduces to the integration of system (1.8) closed by Eq. (1.2). The boundary
conditions are as follows:

Attheboundary of the gas chamber, i.e., at r=r;, due to the assumed scheme of instantaneous detonation
and instantaneous equilization of pressure during the expansion of the chamber

p/on = (ro/R)%;
at the shock-wave front in the medium (at the precursor)
p — po = pouD, (p — po)D = pu
(rg is the radius of the explosive charge, D is the velocity of the shock-wave front).
v We change over to dimensionless quantities and dimengionless Lagrange variables
P° = PIPn, Po = Po/Pn, Po = P/Pn, VO =V/Vy,
0=c/cp, u'=u/ep, D*=D/cpy, R'=R /1y, r'=r/r), t?=tcy/r,, where cp=Vknpn/on.
" In the new variables the equations of dynamic (1.3) and static (1.4) compressibility have the form

Vo' =1/
0_“1_{—2“ [?_ilg_p_TI;gz_i'i] 1]

V i=2 npjo 30
vo 2 o ~1/v;
°n’ P ‘—'P
Vo o it npiocio v
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TABLE1

. A, kg/ 1, kg/
Media @ | e | o {(secem®) | (secem)
Water-saturated soils| o.01 | 0,39 | 0,6 | 3,28108 | 1,09-102
Water 0,06 036! 06 | 3,39-105 | 1,43-102
Gas 0,00 {099 | — 1,49.108 0,495-102

and Eq. (1.2) determining the behavior of the medium becomes

i+

{1!0_: 5P°(pn)_1__i a‘iz[?i(po )+1] —V;-___

0 o [1]
ot 90 \po/ Ky i Pioid kPt )

Ay
cero(On \ Pn \ v (0 ~Po) " (1.9)
s |l - Safremn |

In contrast to (1.2), Eq. (1.9) contains the ratio ry/n and not 1/n. The viscosity coefficient n is found
experimentally. According to [1] the approximate values of n are given by the formula

7 = Ary/3, {1.10)

where A is the acoustic resistance (impedance) of the two-component medium (solid and liquid part’cles)
surrounding the gas bubbles,

A= C9P20 -+ CaPa0 12 Qg I oy 12 Ty Aro
= {—o 2 2 3,
1 Pa0Cap P3of3p .’

and rx is the radius of the gas bubbles (all bubbles of the same radius). In the water—air medium we get
A= onczo/“;./z- .

It follows from (1.10) that the ratio ry/rx occurs in (1.9); i.e., in the new variables the solution is valid
for all media where ry/rx has a given value.

The problem was solved for a trotyl -type explosive in water - saturated soil withe; =0.01,a, =0.39, anday =
0. 6 and values of ry/ry =0.01, 0.02, and 0.002. In the computatlons we took k, =3, ko =1.25,py =96,000 - 10° N/
m?, py,= 1600 kg/m3, Q=1000 cal/g, ¢, =4250 m/sec, pyp=1.20 kg/m?, Pag —1000 kg/m3, P = 2650 kg /m3, Cy =
330 m/sec, cy=1500 m/sec, c3p=4500 m/sec, yy=1.4, v,=7, y3=4.

The values of A and 1 for some media are given in Table 1. The values of  correspond to rs =0.01 cm.,

The solution was obtained by the method of characteristics using a computer; the use of this method for
media with volumetric viscosity was discussed in [1, 2]. A continuous computation of the spherical problem
in a viscous medium from the instant of explosion to the time when the wavefront (precursor) reaches dig-
tances of the order of 100r, is difficult, since it requires a large amount of computer time. This is due to
the nature of the wave profile. At large distances from the explosion it contains segments of very slow and
very rapid pressure increase (the transition zone shead of the pressure maximum). For the computation of
the transition zone 10-20 points are needed. For the uniform grid this requires the introduction of 10,000



points. Therefore, a simplified variant of the solution was chosen. The wave was computed successively
in the following regions: 1=r’=2.5; 2= r’< 6; 5= r'=17; 15= r’= 30; r'= 30.

In the section r?=1 the pressure was specified in the form p?=p'(R%); at the subsequent positions it was
specified in the form p%(t?) taking into consideration the solution in the preceding region. Overlapping regions
confirmed the accuracy of the solution.

82. We now discuss the results of computations of the wave in the viscous medium with rx/ry=0.01 and
in a nonviscous medium. Curves 1-3 in Fig. 1 show, respectively, the pressure at the wavefront (precursor),
the maximum pressure, and the pressure at the boundary of the gas chamber as a function of the distance in
the viscous medium. Curve 4 corresponds to the maximum pressure in the nonviscous medium. The pressure
distribution p’(x?) in these media is also shown for five time instants. Here and below the solid curves refer
to the viscous medium and the dashed curves to the nonviscous medium. The maximum pressure in the

‘viscous medium is smaller than in the nonviscous medium by 5-7%. In both media the pressure at the in-
vestigated distances increases discontinuously; however, the jump is smaller in the viscous medium, At r’=2
the magnitude of the pressure jump in the viscous medium is about 0.75 of its value in the nonviscous medium,
In the viscous medium the pressure behind the jump increases to the maximum continuously.

The change in the state of the particles of the medium during the passage of the wave at distances r¥=1,
1.1, 1.3, 1.7, 2.8 is shown in Fig, 2a. Curves 1, 2 correspond to the diagrams of dynamic and static com-
pression of the medium, It is evident that after the shock compression at the precursor OF, occurring accord-
ing to the dynamic diagram, the state is close to the static diagram along the lines FM, which are a continuation
of the straight line OF for all points except the first. The discharge occurs practically according to the static
diagram. At these distances the minimum volume in the viscous medium is obtained at the maximum pressure.
A gimilar nature of the change of state is retained at moderate pressures (see Fig. 2b). At relatively small
pressures (see Fig. 2¢) the lines FM are not rectilinear, the minimum volume is obtained during the period
of pressure decrease, and the discharge of the medium occurs along the curve lying beyond the diagram of
static compression.

The time dependence of the pressure p’(i?) in particles with r’=5.7, 6.3, 7.1, 8.1, 9.3, 10.7 in viscous
and nonviscous media is shown in Fig, 3. In the viscous medium the precursor moves on and the magnitude
of the jump rapidly decreases to zero (denoted by circles). Curve 1 gives the pressure change at the pre-
cursor, curve 2 gives the maximum pressure in the viscous medium, and curve 3 gives the maximum pressure
in the nonviscous medium, The difference between the maximum pressures in the viscous and nonviscous
media does not exceed 8%. For r!>9 the pressure at the precursor is practically equal to p; here the maxi-
mum dimensional pressure in the wave is p~800°10° N/m2, The time taken for the pressure to reach its
maximum increases with the distance of the wave from the point of explosion.

T }
100
50
P° 55 60 65 7
9= 70 20 30 r9
Fig. 4
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Fig. 5

Fig. 6

The results of the computation of the pressure in the viscous (for r«/r;=0.01) and nonviscous media are
shown in Fig. 4, Curves 1-3 give the trajectory of motion of the boundary of the gas chamber in the viscous
medium, the pressure maximum, and the precursor, respectively; curve 4 corresponds to the pressure maxi-
mum in the nonviscous medium. The pressure maximum in the viscous medium moves with a velocity close
to the velocity of the maximum in the nonviscous medium, i.e., the velocity determined by the static com~
pression diagram; curves I-IIL correspond to the pressure distribution in the medium (vertical hatching) at
time instants 9.5, 30, 70; the shock front in the nonviscous medium attains distances r®=6, 13, 20. The graphs
of the change of pressure with time p’(t) (horizontal hatching) are also plotted for the same distances. A part
of the position of I is shown on enlarged scale in the right bottom corner.
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The difference between the maximum pressures in the viscous and nonviscous media at all distances
does not exceed 12%. The wave profiles p*(t?) are significantly different. In the nonviscous medium the wave
remains a shock wave; in the viscous medium the jump gets smeared. At a sufficient distance from the
explosion point the pressure (after the arrival of the precursor) remains almost equal to zero for some time
and only later begins to increase to its maximum value. The length T4 of this transition zone of intense
increase at a distance r’=20 is smaller than one half the time 7 from the arrival of the precursor to the
arrival of the maximum pressure. As the separation from the explosion point increases, T and 74« increase,
but 7y increases appreciably more slowly., After the maximum is attained, the dependence p*(t) is practi-
cally identical in both media. Thus, noticeable differences in the wave profiles with and without the viscosity
are observed mainly in the time period before the maximum pressure is obtained within the particle,

As in the case of the pressure, the differences between the extremal values of the volume and the
- velocity of the particles, computed with and without viseosity, do not exceed a few percent. The main differ-
ence of the functions V*(t?) and u%(t%) in these media is the presence of the jump in the absence of viscosity
and the continuity of the change in the viscous medium. The extremal values of the particle velocity, the
volume, and pressure in the viscous medium are attained almost simultaneously at these distances.

The graphs of p’(t9, u%t% (solid curves) and VUt (dashed curves) at distances r? =30, 32, 35, 40, 45in the
. viscous medium are shown in Fig. 5.

The graphs cover the region of increase of the parameters, in which their values are noticeably different
from the initial values (for the pressure it is time 7*), and the region of decrease. The time period immedi-.
ately after the arrival of the precursor, when the parameters are practically equal to their initial values, is
not included. Theextremal values of the parameters decrease as the distance from the explosion increases
and the time required to attain these extrema increases. At these distances the volume and the velocity of
the particles attain their extrema not at the maximum pressure near the explosion, but during the period
of the pressure decrease. The difference in the duration of the pressure increase, the velocity of the particles,
and the volume increase with the distance from the explosion. The rate of decrease of the values of all
three parameters decreases as the distance and the total duration of the wave increases.

We now discuss the results of investigation of the dependence of the wave parameters on the viscosity
coefficient or equivalently on the radius of the bubble. For the viscous medium with a;=0.01 and rx/ry=0.01
the dependence p%(t?) is obtained for r=30 and this is used to compute the wave parameters at large distances
in the nonviscous and viscous media for rx/ry;=0.02, 0.01, and 0.002.

The computations show that the maximum pressure can be approximated by the formula
P =P (riro), ro =1,

where r}=30, p}=22.3 - 10~ (maximum pressure) at rj. The quantity 8 in the nonviscous medium and the
viscous medium with rx/r;=0.02, 0.01, and 0.002 comprises 2,55, 2.52, 2.43, and 2.37, respectively. The
pressure decreases most intensely in the nonviscous medium. The intensity of the decrease in the viscous
medium decreases with the increase in the radius of the bubble, i.e., with the increase of the viscosity co-
efficient 7. The difference is small; Ata distance r®=50 in the nonviscous medium and in the viscous medium
with ry/1y=0.02 it is less than 5%.

Thus, at small distances from the explosion the maximum pressure decreases more intensely in the
viscous medium, while at large distances it decreases more intensely in the nonviscous medium. A similar
- feature was noted earlier in the case of plane waves [3].

The dependences p*(t?), u’(t?) (solid curves) and V(t%) (dashed curves) in the viscous medium at a dis-
tance r’=35 are shown in Fig. 6 for different radii of the bubble. Curves 1-3 pertain to the values ry/r;=
0.02, 0.01, and 0.002, respectively. In the segment Ar’=5 the maximum pressure changes insignificantly (by
1-2%) on increasing the bubble radius by an order of magnitude. The wave profile changes significantly; the
length of the transition zone of intense increase of the parameters increases by a factor of 5-7. The volume
and the velocity of the particles attain their extremal values during the period of pressure decrease. The lag
increases with the bubble radius, The nature of the decay of the parameters after the extremum is reached
remains practically unchanged on changing the bubble radius by an order of magnitude. The increase of the
viscosity coefficient leads to an increase of the intensity of wave smearing.

Let us compare the values of the wave parameters in the viscous medium and the nonv1scous medium but
computed according to the dynamic diagram of the viscous medium. The values of p%, DY, and u® computed for
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TABLE 2

223
™ 0 0,04 o | oot | o | o0

5 0,52-107 [ 0,43.107* 0,502 0,452 0,27-107% | 0,26-107%
10 0,47-107* | 0,93.1072 0,434 0,323 | 0,4 -10°% | 0,77.4072
20 0,66-1072 | 0,68.40~2 0,407 0,131 0,43-1072 | 0,14.1072
30 0,40-1072 | 0,24.1073 0,400 0,080 0,26.10"2 | 0,75.1073
40 0,28.10"% | 0,43.107% 0,396 0,057 0,19.107% | 0,48-1073
50 0,21.1072 | 0,9 .10™* 0,394 0,046 0,45.40"2 | 0,36.10%

@;=0 and 0.01 according to the model without viscosity are shown in Table 2. In the first case the compression
diagram practically coincides with the dynamic diagram of the viscous medium; in the second case it coincides
with the static diagram. As mentioned above, the results of the computation according to the static diagram
differ from those for the viscous medium only by a few percent. Table 2 shows that even at r¥=20 in the
viscous medium the maximum préssure is an order of magnitude smaller than in the computations according -
to the dynamic diagram; the particle velocity and the velocity of the maximum D? differ by a factor of 3. Sub-
sequently the difference increases. Thus, the wave parameters in the viscous medium are significantly
different from the parameters computed according to the dynamic diagram.

§3. The experiments show that in soils there exists a similarity for detonation waves; ontheotherhand,
in a medium having volumetric viscosity the similarity need not necessarily be there. The computations
carried out here enable us to explain this apparent contradiction. Let the radius of the gas bubbles in a medium
with a;=0.01 be equal to 0.05 cm. Then curve 1 in Fig. 6 pertains to an explosive charge of radius ry=2.5 cm
and curve 3 to r;=25 cm, On changing the radius by an order of magnitude, i.e., on changing the mass of the
charge by three orders of magnitude, the extremal values of the pressure, particle velocity, and detonation-
wave velocity change at similar distances only by a few percent. Considering the intrinsic scatter of the
properties of the soil (for example, content o) it is not possible to perceive such a difference in the experi-
ments. The similarity principle is not exactly satisfied; however, the deviations of the extremal values of the
wave parameters from the similarity are small and cannot be verified experimentally. Computations show
that the time for the increase of the wave parameters to the extrema depends substantially on the scale of the
phenomenon. With the increase of the charge mass by three orders of magnitude the growth time at a distance
r’=35 increases by a factor of 5-7. This result can be verified experimentally. The lag of the minimum
volume in relation to the pressure maximum also increases with the increase of the mass of the charge.

The problem of propagation of a spherical detonation wave in a nonviscous medium is solved in [9] based
on the model of [6]. The computations are done for five water-saturated soils with the content of the gaseous
component varying from 0 to 0.04. It is shown that the wave parameters have a significant dependence on
;. At sufficient distances from the explosion point with the increase of @, in this range the maximum pressure
decreases by two orders of magnitude and the velocity of propagation of the maximum pressure and the
particle velocity decrease by an order of magnitude. A comparison of the computational results with those
of the experiments conducted on water-saturated soils in field conditions for the mass of the explosive charge
varying from 1 to 100 kg shows a good agreement,

At the same time the computations showed that the wave is a shockwave at all distances for all @;, In
the experiments for ;=0 the wave is actually a shock wave but for o;>0 smearing is observed. The time of
the increase of the pressure to the maximum increases with @; and for a;=0.04 it reaches tens of milliseconds,
Computations done on the basis of the model of the multicomponent medium with volumetric viscosity show
that it reflects the properties of real media more accurately and completely than the model without viscosity.
The extremal values of the parameters depend substantially on the content of the gaseous component and their
dependence on the viscosity coefficient  is considerably weaker, An order of magnitude change in 7 changes

.their values by a few percents. The smearing of the detonation wave and its transformaticn from a shock wave
to a continuous compression wave depend substantially on both ¢y and 1. The intensity of smearing increases
with the increase in a4 and 7. Away from the explosion the extremal values of the particle velocity and volume
are attained during the period of pressure decrease. The extremal values of the parameters can be computed
approximately from the model without viscosity according to the static diagram of the model of the viscous
medium; for determining the temporal characteristics, i.e., the time for reaching these values, and the wave
profiles p*(t%), u®(t?), and V() it is necessary to use the model of a medium with volumetric viscosity.

The authors express gratitude to L. I. Sedov and 8. S, Grigoryan for discussion of the work.
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OPTIMUM CONDITIONS FOR EXCITATION
OF ELASTIC VIBRATIONS IN SOLIDS BY
PULSED IONIZING RADIATION

V. D. Volovik and S. I. Ivanov UDC 534.231+539.121.7

Investigations of elastic vibrations accompanying the interaction of pulsed ionizing radiation with solids
have shown that mechanical stresses are produced by an unsteady thermoelastic body force F(r, t) [1, 2]

F(, 1) = —I'vE(, 1), (1)

where T is the Grilneisen constant of the target material and E(r, t) is the energy absorbed from the beam of
ionizing radiation per unif volume of target material.

Ordinarily nonstationary thermoelasticity problems require the simultaneous solution of the wave equa-
tion and the heat~conduction equation. If the duration of a pulse of charged particles 71, interacting with a solid
target satisfies the condition

T,y <. Th & Tp & /X, (2)

the propagation of heat does not have to be taken into account during a time on the order of magnitude of the
pulse duration. Here Tej is the time to establish uniform temperature conditions in the electron and ion sub-
systems of the material, 7T is the characteristic time for heat to diffuse from the region heated by a beam
of radius ry, and » is the thermal diffusivity of the target material,

If condition (2) holds, and in addition Tg= rb/ ST, the temperature of the region heated by the beam
can be considered constant even for a time 7g — the time for an acoustic wave propagating with velocity s to
leave this region. In this case the problem of finding the displacement of elastic waves u excited by a pulsed
beam of particles is reduced to the problem of solving the wave equation, which for an infinite target can be
written in the form

Khar'kov, Tfanslatedfrom Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 6, pp. 137-140,
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